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A new model problem for static aeroelasticity is introduced and
used to illustrate several alternative approaches for formulating
multidisciplinary design optimization problems. The alternatives are
distinguished by the kind of analysis problem feasibility that is
maintained at each optimization iteration. In the familiar “mubltidisci-
plinary feasible” approach, the full multidisciplinary analysis prob-
lem is solved at each iteration of the optimizer. At the other end
of the spectrum is the "all-at-once” approach where none of the
individual analysis discipline equations is guaranteed to be satisfied
until optimization convergence. In between lie other possibilities
that amount to enforcing feasibility of the individual analysis disci-
plines at each optimization iteration, but allowing the coupling be-
tween the disciplines to be incorrect until optimization convergence.
Results are given for these three approaches applied to the new
model. In general, delaying feasibility until optimality reduces the
total amount of computing work. © 1995 Academic Press, Inc.

1, INTRODUCTION

The purpose of this paper is to apply three alternative ap-
proaches for multidisciplinary design optimization (MDQO),
introduced in [1], to a model problem for static aeroelasticity.
By MDO we mean the coupling of two or more analysis disci-
plines with numerical optimization. The reader unfamiliar with
this relatively new field may wish to consult the proceedings
of three recent symposia [2-4] on MDO.

The new model for aeroelasticity was introduced in [5], and
much of the material in that unpublished report is repeated here
for completeness. The physical situation is depicted in Fig, 1.
The model is an extension of the one-dimensional duct flow
model, previously employed in studying aerodynamic optimiza-
tion [6-8], to allow for flexibility in the walls of the duct, thus
introducing ‘‘structural’’ effects. Since the solution for the flow
is influenced by changes in duct shape due to this flexibility
and since the displacement of the wall is caused by pressures
generated by the flow, the model exhibits simple static aeroelas-
tic behavior. By analogy with aeroelasticity for a flexible air-
craft wing, we refer to the analysis disciplines involved as
aerodynamics (or flow) and structures.

We emphasize that our goal is to highlight the trade-offs
among the various MDO formaulations in the context of a con-

crete, but rather simple, model problem. Because the model
investigated here is radically simpler than real MDO problems,
we cannot hope to reach any general conclusions about which
(if any) of the formulations would be appropriate for real MDO
problems. However, we do examine many questions that should
be asked in making such a determination,

The outline of the paper is as follows. In Section 2, we
present both the analysis and design problems for the flexible
duct model. In Section 3 we review the multidisciplinary opti-
mization formulations. In Section 4 we present results obtained
by applying the formulations to the model. In Section 5 we
make some concluding remarks.

2. FLEXIBLE DUCT MODEL PROBLEM

2.1. Continuous Analysis Problem

We now present the continuous analysis formulation for the
flexible duct model. Here and in what follows, the aerodynamics
{or flow) discipline is denoted by subscript 1, and the structures
discipline by subscript 2.

In [6] we showed how the steady flow of an inviscid fluid
in a duet of variable cross sectional area A() + d(£), governed
by the Euler equations, can (under certain circumstances) be
reduced to the single nonlinear ordinary differential equation

w=fg+ g =0, (1)
where
f@)=v+ Ao, 8. 8=2"% 5 Fm)
v)=v v, g =" .

v(& is the fluid velocity, £ is distance along the duct, and ¥
and H are given constants. Here, the subscript £ means differen-
tiation with respect to £ The specified boundary values v(0)
and v(l) are chosen so that the (weak) solution of (1) contains
a shock. The derivation of this part of the model and much
more detail about it can be found in [6].

In the above formulation, the area function A is thought of
as the specified ‘*aerodynamic’’ shape of the duct, not including
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FIG. 1. Model problem geometry.

flexibility effects. The area function 4 gives the change in
aerodynamic shape due to flexibility of the upper wall. Note
that 4 << ( in Fig. 1. We assume that the area change 4, which
is like a ‘‘displacement’” in structural analysis, 15 governed by
the beam equation (from beam theory)

wy = [sdgl, — pley = 0. (2)

Here, s(£) is the given beam stiffness, usually designated as
EI in the engineering literature, where E is Young’s modulus
and I is the cross sectional area of the beam. The forcing
function p is analogous to pressures in aerodynamics and in
reality tums out to be a function of both v(£) and A(£€) for
the model (1). However, to simplify our model, we take p

to be only a function of the velocity v, namely p(v) = —uv.
We assume that the boundary conditions on (2) correspond
to those of a cantilevered beam, namely, d(0) = 0,

dg0) = 0, d(1) = 0, di(1) = 0.

2.2. Discrete Analysis Problem

Equations (1) and (2) are assumed to be discretized on two
different computational grids, called the aerodynamic (or flow}
grid and the structures grid.

We first consider the discretization of (1). Let the &
coordinate be discretized by a uniform, cell-centered ‘‘aerody-
namic’’ grid with centers at £, = (m — L/2)AE,, Aé, =
/M, where M is the number of unknown (interior) grid
values. Let V,, represent a piecewise constant approximation
to v on each grid cell. Then, a conservative difference scheme
for (1) is given by

Win=Fpn — Foopn + (AE)E, =0 (3)
for m = 1, ..., M. Here the source term %, invalves V and A,
defined on the flow grid, and the displacements D which will

subsequently be defined on the structures grid; we discuss the
evaluation of this term later. The boundary conditions on V are
W=V —v(0) = 0and Wiy = Viyoy —v(1) = 0.

To complete the discretization of (1) it remains to prescribe
the fluxes %.,..,,; as functions of V,, and V,,,. Three such
prescriptions; ¥, F°, and F4Y, corresponding to the Godu-
nov, Engquist-Osher, and artificial viscosity methods for nu-
merically approximating hyperbolic conservation laws, are
given in [6]. The trade-offs between the three choices are also
discussed in [6]; here, for simplicity, we use only the artificial
viscosity flux, defined as F4Y,, = i[f (V) + f(V,) —
(Va1 — V,)]. By making this choice we have sidestepped some
issues regarding AAQO optimization involving difference
schemes of low continuity; see [6]

Next we consider the discretization of (2). Let the &-coordi-
nate be discretized by a uniform, point-centered ‘‘structures’
grid £, = nAé,, Aé, = 1/(N + 1), where N is the number of
unknown interior grid values. Let D, represent an approxima-
tion to 4 at each grid point and §, = s(&,). Then a simple finite
difference approximation for (2) is given by

Wi,n = 52[Sn62Dn] - (Agn)qpn = 0: (4)

forn=2,3,.,N—1,where §2D,=D,,, — 2D, + D,_ is

the usual centered, second difference operator. The evaluation
of P, on the structures grid involves V,, on the flow grid; we
discuss its evaluation later. The boundary conditions are W, =
Dy =0, Wopy = Dy =0, Wy = =3D + 4D — D, = (),
and W,y = Dy_; — 4Dy + 3Dy, = 0. The latter two conditions
are second-order accurate, one-sided approximations of the de-
rivative boundary conditions on d.

Once the discretization has been made, we are faced with
solving a system of nonlinear algebraic equations. Let
U, = [V, Vi, ..., Vil be the vector of unknown analysis
variables (velocities) on the aerodynamics grid, and U/, =
[Dy, Dy, ..., Dys] be the vector of unknown analysis variables
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FIG. 2. Multidisciplinary feasibility is achieved when the aerodynamics
equations are satisfied, the structures equations are satisfied, and the interdisci-
plinary mapping is correct. ’

{displacements) on the structures grid. The system we need
to solve is

WilXp, Y, U} =0,

WXy, Yu; Uz) =0, {5)

Y, — Gu(lU;) =0,

Yo — G/ =0. (6)
We call (5), (6) the multidisciplinary analysis, or MDA,
system. Here, W, represents the system of discrete flow
equations W, ., m = 0, .., M + | and W, represents the
system of discrete structures equations W,,., n = 0, ..
N + 1. Xp represent physical parameters like spline coeffi-
cients defining the duct area A and structural stiffness s;
these are fixed for the analysis problem, but later they are
possible optimization variables for the design problem. (In
this paper, we examine a design problem in which only A
is controlled by design variables and s is fixed.) Our notation
here mimics that introduced in {1].

The terms G ,(U;) and G4 (V) in (6) represent the evalua-
tion of the displacements D on the flow grid, and the
pressures P on the structures grid, respectively. We call these
interdisciplinary mappings, since they map the outputs of
one discipline into the inputs to another discipline. In practice,
each of these mappings is likely to be the composition of
two other mappings, G; = E;(F;{U;)); see Fig. 2, Here
g = Fy(t;) is a “fit’”” of the output of discipline j to
obtain, say, some spline coefficients ;. Note the convention
that double subscripts ij denote a “‘to—from’’ relationship.
The fit F; may be either an interpolation or an approximation.
In practical applications it is likely to be the latter, since

this reduces the amount of information transmitted between
disciplines and, for the “*individual discipline feasible’” formu-
lation of MDO (described later), thereby reduces the number
of design sensitivity calculations required in optimization [1].
The mapping E; is an evaluation of the spline representation
from discipline j into a form suitable for use by discipline
i. Both F and E may contain additional computations that,
for example, calculate loads from pressures. They could also
both depend on the design variables X,, although we do
not assume such dependence here.

In this particular flexible duct example, the interdisciplinary
mappings serve the simple purpose of moving back and forth
between the flow grid and the structures grid. Specifically,
the evaluation of the term %, in (3), which approximates
g, & in (1), proceeds as follows. The factor (yv —
H/v) is evaluated simply as ¥V, — H/V,. It remains to
approximate (A; + d)/(A + ). We assume that the area
function A is given by a piecewise cubic spline described
in the B-spline basis, with coefficients b (that are design
variables later), and that D, from the solution of (4) has
also been fit with a piecewise cubic spline with coefficients
M1z in the manner described above for interdisciplinary map-
pings. Then we can either evaluate (A, + d))/(A + d) at
£, on the flow grid directly from the two splines, or we
can evaluate A, and D, from the splines, and employ a
difference formula to approximate A, and d;; we do the
latter. Similarly, the evaluation of P, in (4) is obtained by
fitting a spline with coefficients w, to —V, on the flow
grid and evaluating the spline at £, on the structures grid.

In discussing the formulations in Section 3, we will say
that individual discipline feasibility has been achieved when
{5) is solved, irrespective of where the inputs Y from the
other disciplines come from. (They may be guessed or
estimated, for example.) We will say that we have multidisci-
plinary feasibility if, in addition to (5) the interdisciplinary
coupling equations {6) are satisfied. In other words, multidisci-
plinary feasibility means that the MDA system is satisfied.
In terms of Fig. 2, multidisciplinary feasibility means that
equilibrium has been reached in the graph representing the
flow of information. The observation that it is possible to
have individual discipline feasibility without multidisciplinary
feasibility is key to the IDF formulation, presented later.

To achieve multidisciplinary feasibility, we need a method
to solve the MDA system of nonlinear algebraic equations
(5), (6). Two obvious methods are fixed point iteration and
Newton’s method. In fixed point iteration, we (for example)
guess Uy, solve W, = 0 for U,, use these values of U, to
solve W, = 0 for U,, and then iterate. This assumes that
we have individual discipline solvers for W, = 0 (flow) and
W, = 0 (structures) already available. For our model, we
assume that the flow solver uses Newton's method with
iteration matrix & W,/al/,, and the structures solver simply
forms and solves the linear discrete structures equations with
coefficient matrix oW,/0l/;.



76 GREGORY R. SHUBIN

In Newton’s method for the coupled equations (5), (6), we
need to form and solve the following linear system:

aw, W,
r'*)U] 6U2 AU} 7W[

ol e
oW, oW, |Lav, ~W,
89U, 3,

The off-diagonal blocks 6W,/9U/, and dW,/oU, represent the
coupling from structares to flow, and from flow to structures,
respectively. Note that, to compute these, it is necessary to
differentiate through the interdisciplinary mappings G. This
means that the fitting and evaluation processes that ordinarily
constitute these mappings must be chosen to be differentiable.
Later, we call this the ‘‘Newton-grid”” method since it uses
Newton’s method to solve for the grid-based variables [/;. Also
mentioned later is the occasional need to damp the Newton
iteration to get it to converge.

A third, less obvious option for solving (5), (6) is to solve
simultaneously, using (say} Newton’s method, for the spline
coefficients i, and u, defining the interdisciplinary mappings.
In this option, the equations we need to solve are

F(Ux(Xp, Ezf(ua ) =0
Fu(U(Xp, Eq{p))) =0

Cin=pay — ®)
Co = gy —

Here the U; are thought of as solution operators. For use later,
we define wy; = Fy(U(Xp, E;(a;))) as the overall operator that
provides the spline coefficients from a discipline’s (output)
fitter as a function of the coefficients to the discipline’s (input)
evaluator. Again, X, is fixed for now but we include it for
reference later. We then rewrite (8) as

Cio =z — & =0,

_ )]
Cy = iy — iy = 0.

The Newton step is obtained by solving the linear system

, O
o || Apia —Cp
3 = . (10)
. T I AM:] —Ca
Oy

Later, we call this the ‘‘Newton-spline’’ method. This approach
is closely related to the individual discipline feasible (IDF)
method for multidisciplinary design optimization discussed
later.

Note that the coefficient matrices in (7) and (10) are funda-
mentally different. The matrix in (7) involves derivatives of
residuals with respect to variables appearing in the equations.
The matrix in {10) involves the derivatives of solutions of

equations with respect to inputs to those equations; these latter
partial derivatives are far more difficult to obtain. Their calcula-
tion is discussed in Section 3.5 on gradient computations.

2.3. Continuous Design Problem

The formulation of the continuous design problem boils down
to the specification of an objective function, constraints, and
design variables. There is by no means any consensus in the
literature concerning how to choose these for aeroelastic optimi-
zation.

In aerodynamic optimization alone (no structural effects),
the typical objective is to come as close as possible to some
specified pressure distribution, or to minimize drag. (The latter
objective is infrequently used today due to the difficulty of
computing drag accurately in transonic flow.) The design vari-
ables are shape parameters, say, spline coefficients, that de-
scribe either the aerodynamic shape or changes to some base
aerodynamic shape. Constraints may be used to prohibit unde-
sirable shapes or flows, For the duct flow model ((1), with
d=(0), the problem investigated in [6] was to find A(§),
A > 0, such that v(§) satisfies (1) and f;[v(é') — 0O diis
minimized. Here, 0 is a specified velocity distribution that we
want to come as close to as possible. Some interesting further
investigations carried out using this model may be found in
[9]. While those investigations suggest that bounds on A are
required for a well-posed optimization problem, we have not
explicitly enforced such bounds in this paper.

In structural optimization alone, the objective is typically to
minimize weight. The design variables are usually sizes or
strengths of structural members, but they can also be shapes.
Constraints may specify maximum allowable deflections, maxi-
mum stresses, minimum allowable sizes, etc. A suitable optimi-
zation problem for the beam equation (2) with the forcing
function p specified, would be to find the stiffness distribution
s(&) such that displacement d was less than some maximum
value and weight was minimized. According to [10], a good
measure of weight is f 526 d&. where we have assumed that
Young’s modulus is constant and the moment of inertia is
spatially varying.

When the disciplines of flow and structures are combined,
there is a large variety of possible combinations of objective,
constraints, and design vartables, but only a few of the combina-
tions make sense. Ultimately, for real aeroelastic optimization
of aircraft, we expect that there will be both aerodynamic and
structural design variables and constraints and that the objective
function will be related to some measure of overall aircraft
performance, like direct operating cost.

For the present purposes of demonstrating the behavior of
our model, we choose a particularly simple problem, namely,
a slight modification of the one investigated in [6]. Thus, our
design problem is:

Find A(f), AL& > 0, such that v(£) and d(§) satisfy
(1Y and (2) and f [w($) — 6(O)? déis minimized.
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For this paper, it is assumed that the structural stiffness s(£),
which is a potential design variable in more complex design
problems using this model, is fixed. Thus, in this problem we
are essentially doing aerodynamic optimization alone, but the
analysis problem includes aeroelastic effects.

2.4. Discrete Design Problem

We assume that a desired (or goal) velocity distribution v,
is given for each computational cell. Then the discrete design
problem is:

Find & (spline coefficients grescribing 4(&)), such that (5),
(6) is satisfied and F = 2., [V,, — V..J> is minimized.

It is this discrete design problem to which the formulations
presented in the next section will later be applied. Note that
the objective function F should not be confused with the fitting
functions £, and F5,.

As discussed in [11], it is sometimes desirable to fit the
discrete computed and goal velocities with smooth functions
(say splines), and to compute the objective function as the
integral of the squared difference between the two splines. This
tends to make the objective function smoother, which can make
the optimization work better in the presence of nonuniform
grids and steep solution gradients or shocks. This stratagem
will not be required for the present purposes.

3. ALTERNATIVE OPTIMIZATION FORMULATIONS
FOR MDO

We now review the three basic approaches presented in {1)
for formulating multidisciplinary design problems as optimiza-
tion problems. This material is repeated here from that refer-
ence. We assume that the discretization has been made and we
are trying to solve the discrete design problem.

The key issue in the alternative MDO formulations is the
kind of feasibility that is maintained at each optimization itera-
tion. The term feasibility here means satisfaction of an equation
or a set of coupled equations. In the multidisciplinary feasible
(MDF) approach, complete multidisciplinary analysis (MDA)
problem feasibility is maintained. Recall that, for our model,
this means that the discrete aerodynamics equations are satis-
fied, the discrete structures equa;ions are satisfied, and the
interdisciplinary coupling is correct. Mathematically, Egs. (5),
{6) are simultaneously satisfied.

In the individual discipline feasible (IDF) approach, individ-
ual discipline feasibility is maintained at each optimization
iteration. For our model, this means that each set of discrete
equations (5) are satisfied, but the interdisciplinary coupling
(6) is not correct until optimization convergence, In an IDF
aeroelastic optimization, at each optimization iteration we have
a “‘correct”’ acrodynamic analysis and a ‘‘correct’’ structural
analysis. However, it is only at optimization convergence that

the pressures predicted by the aerodynamic analysis correspond
to the loads input to the structures and that the displacements
predicted by the structural analysis correspond to the geometry
input to the aerodynamics.

In the all-at-once (AAO} approach, all of the analysis vari-
ables are optimization variables and all of the analysis discipline
equations are optimization constraints. Thus, feasibility in
AAQ, even for the single discrete equations within a discipline,
is guaranteed only at optimization convergence. The optimizer
assumes the responsibility for eventually achieving multidisci-
plinary feasibility.

A drawback of the IDF and AAQ approaches is that no useful
information may be available if the optimization is stopped short
of convergence, since the analysis equations are not necessarily
satisfied. By contrast, stopping MDF short of optimization con-
vergence could yield useful design improvement.

We use the convention that all variables controlied by the
optimizer are denoted by X with certain subscripts; this conven-
tion allows one to immediately identify what is, and what is
not, an optimization variable. The original design variables,
which are the spline coefficients b describing the duct area
A(&), are denoted X, (for design) and are optimization variables
in all three formulations. The AAO and IDF formulations in-
duce additional optimization variables as part of their defini-
tions. In the AAQO formulation, these additional optimization
variables are the optimizer’s estimates of the discrete velocities
on the flow grid, designated Xy, and the optimizer’s estimates
of the discrete displacements on the structures grid, designated
Xv,. In the IDF formulation, the additional optimization vari-
ables are the optimizer’s estimates of the interdisciplinary spline
coefficients X, and X, . These optimization estimates may be
thought of as ‘‘surrogates’ for the variables appearing as the
subscripts on X,

In the following, we explain each of these approaches in a
little more detail; a more precise (and more abstract) mathemati-
cal presentation, using similar but not identical notation, may
be found in [12].

3.1. All-at-Once (AAQ) Approach

In the all-at-once (AAOQ) formulation the optimizer *‘con-
trols’” both estimates of the analysis variables XU.’ Xuz, and
the design variables Xp; the equations W, = 0 and W, = 0
from the analysis disciplines appear as explicit constraints in
the optimization. Figure 3 shows the flow of information for
the AAO formulation. Note that in this and subsequent figures,
the codes that implement the interdisciplinary mappings are
not explicitly shown as boxes in the information flow. Also
not shown is the flow of design constraint information that may
be present in more complicated problems.

In AAO, we do not require analysis problem feasibility in
any sense (individual discipline or multidisciplinary) until opti-
mization convergence is reached. In a way, the optimizer does
not “‘waste’” effort trying to achieve feasibility when far from
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FIG. 3. Flow of information in the all-at-once (AAQ) approach,

an optimum; the expectation is that the overall optimization
process will thereby be more efficient. In AAO the ‘‘analysis
code’” performs a particularly simple function; it evaluates the
residuals of the analysis equations, rather than solving some
set of equations. Ultimately, of course, the optimizer for AAO
must solve the analysis discipline equations to attain feasibility.
Generally, this means that the optimization method must con-
tain all of the special techniques (especially for the difficult
discipline aerodynamics) that a single discipline analysis solver
contains, For difficult MDO probtems, it is unlikely that *‘equal-
ity constraint satisfaction schemes’” (e.g., Newton’s method)
present in existing, general purpose optimization codes would
be equal to this task. For the simple duct flow model studied
here such methods are successful; see the results in Section 4.

3.2. Multidisciplinary Feasible (MDF) Approach

As mentioned above, AAO has the disadvantage that the
optimization code must assume the difficult task of simultane-
ously satisfying all the analysis discipline equations, The MDF
formulation has the advantage that it uses the specialized soft-
ware that has been developed for solving the individual disci-
pline equations. Figure 4 shows the flow of information for the
muitidisciplinary feasible formulation. It is the most common
approach to MDO.

MDF is at the opposite end of the spectrum of problem
formulations from AAQ. In the MDF formulation the optimizer
controls only the design variables Xp, and full multidisciplinary
analysis problem feasibility is maintained at every oplimization
iteration. In some sense, MDF is a “‘black-box’’ approach, but

the black-box solves all of the analysis disciplines and assures
that the interdisciplinary coupling is correct.

Note that in Fig. 4 we have assumed that the objective func-
tion is expressed in terms of the grid variables U, and U;. In
some cases, it might be appropriate to formulate F as a function
of the interdisciplinary spline coefficients p , and g, to simplify
gradient computations. This is especially true if the method
used to solve the MDA problem is Newton-spline.

3.3. Individual Discipline Feasible (IDF) Approach

The MDF method has the disadvantage that a full multidisci-
plinary analysis is required each time the optimization code
requires an objective or constraint function evaluation. By
adopting the individual discipline feasible (IDF) formulation,
several methods can be constructed that eliminate the need
for multidisciplinary feasibility while taking full advantage of
existing analysis codes for individual disciplines. IDF occupies
an ‘‘in-between’’ position on a spectrum where the AAO and
MDF formulations represent extremes: for AAQO, no feasibility
1s enforced at each optimization iteration, whereas for MDF,
complete multidisciplinary feasibility is required, The IDF ap-
proach maintains individual discipline feasibility, while
allowing the optimizer to drive the individual disciplines toward
multidisciplinary feasibility and optimality by controlling the
interdisciplinary mappings. Since the optimizer is estimating
the interdisciplinary coupling parameters, the analysis disci-
plines can be solved independently.

While many different IDF formulations are possible [1, 12],
Fig. 5 shows the flow of information for a ‘‘compressed interdis-
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FIG. 4.

ciplinary bandwidth’’ IDF method in which the optimizer con-
trols spline approximations to the interdisciplinary mappings.
Note that, in the IDF approach, analysis variables have been
*‘promoted’’ to become optimization variables; they are indis-
tinguishable from design variables from the point of view of
an individual analysis discipline solver. In IDF, the specific
analysis variables that have been promoted are those that repre-
sent communication, or coupling, between analysis disciplines
via interdisciplinary mappings.

Note that, as before for MDF, in Fig. 5 the objective function
is assumed to be expressed in terms of the grid variables U, and
{J,. Again, in some cases, it might be appropriate to formulate F
as a function of the interdisciplinary spline coefficients w,;
and gy

We note that the basic idea of promoting some coupling
variables 10 become optimization variables has been mentioned
in [13, 14].

3.4. Role of the Optimizer

In the preceding, we have tacitly assumed that the optimiza-
tion method used does nor enforce feasibility as part of its
algorithm; otherwise, there would be little distinction among
the MDF, IDF, and AAO approaches. This issue is discussed
in more detail in [12].

As an aside, we note that an investigation of the relative

Flow of information in the multidisciplinary feasible (MDF) approach.

merits of several optimization techniques for MDO may be
found in [15].

3.5, Gradient Computations

Most calculus-based optimization approaches require the gra-
dients of the objective function and constraints with respect to
the optimization variables. The computation of gradients is
an important issue in MDO, and a factor in choosing among
approaches is the number and difficulty of such sensitivities
{components of the gradients) that need to be calculated; see
[l]. The flow of gradient information is not shown in
Figs. 3-5, but is assumed to follow the function and constraint
information as required for optimization.

We now make some general comments on gradient computa-
tions. Finite differences are popular for small problems, but
they will be prohibitively expensive for large ones. Preliminary
results using automatic differentiation (AD) suggest that, lack-
ing dramatic improvements in AD technology, AD will be
competitive with finite differences for cost. (AD enjoys other
advantages, like better accuracy and ease of use.) We assume
here that only *‘analytic approaches’” such as implicit differenti-
ation, sensitivity equations, or adjoint solutions will be suffi-
ciently cheap for use in large problems. We also assume that
these analytic methods will be roughly equivalent to each other,
so we consider only implicit differentiation. However, the effi-
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analysis loop is broken at the spline coefficients wy; and .

cient catculation of sensitivities is currently an area of intense
research interest, and we can hope for breakthroughs that will
significantly reduce the cost.

Suppose that we need the gradient of the MDF objective
function F(Xp, U(Xp), U,(Xp)) with respect to the design
variables X. That gradient is

aF aF \{al aF \{ U
v FT= _— |+ — i} + | — a4 .
VF) (axn) (aul)(axn) (auz)(axn) b
The difficult terms to obtain are the solution sensitivities

(dU,/0Xp) and (9U,/9X;). These are gotten by differentiating
(5), (6), ar a solution of (5), (6), with respect to Xy, to obtain

Flow of information in the individual discipline feasible (IDF) approach. The bottom box is a simplified verison of Fig. 2, where the multidisciplinary

be difficult to exploit this possibility, since the linear algebra
in such applications would usuvally be iterative. We note that
(12} is equivalent to Sobieski’s GSE1 technique [16]. We call
the gradient obtained by using the solution of (12) in (11) an
““implicit gradient.”

The gradients needed for the IDF objective function are
similar to those required in single discipline optimization. This
is because these gradients need only be evaluated at single
discipline feasibility. They can be obtained by the procedure
above, except with the off-diagonal blocks W, /ol/, and
aW,/al/, of (12} (the ones representing interdisciplinary cou-
pling) zerced out. Of course, this makes the computations of
the aerodynamics gradients and the structures gradients inde-

53‘_% aW, 1| al, oW, pendent.
al, -EJ_ETZ E 87]) We next consider the linearization of the IDF constraints
= . (12}  (9). The linear term is
awy ow, [lovy | | _aw, |
ally ol )L aXp aXp O 12 AL AX
Of course, this linear system has the same coefficient matrix axX,, aXp e
as (7). In small problems one could take advantage of this by _ _ AX, (13)
reusing a factorization to solve the same system for multiple oy _9An
right-hand sides. In large scale practical applications it would 9Xu,, aXp JLAXo



ALTERNATIVE MDO FORMULATIONS 81

Recall that, e.g., X, 1s just an optimizer-controlled value
of p, . Consider the computation of a typical block, say
8iL /08X, . From the definition @y = Fu(Us(Xn, En(X,, D),
the required derivative is given by

My oF, ol

axX, ~ oU,0X,,

(14)

The first term is the derivative of the fitting process, which is
presumed easy to obtain, and the second term is given as de-
scribed above by the single discipline sensitivity

: (15)
X, ) oX,,

al, (aWZ)-' W,
(This formula is obtained by zeroing out the off-diagonal blocks
in (12) and replacing Xy, with X, .} Note that we did not expand
dUL/3X,, = (BULS3Y ) 3Y/dX,, ), where Yy = Ex(X,, ); this
would have required more solutions with a4W,/aU,, since we
assume there are fewer coefficients u,, than data Y.

Note that the computation of (13) requires quite a few single
discipline sensitivities. Let nj; be the number of design variables
and sy be the number of interdisciplinary coupling variables
from discipline j to discipline {. The computation of a single
Jacobian requires {n;; + np) solutions with dW,/al/; and
(73; + np) solutions with dW,/al/,.

Also note that it is sometimes desirable to take transposes
of the above formulas to reduce work; see [1]. However, only
analysis codes employing direct linear algebra could easily take
advantage of transpose solves. Other codes would need to be
retrofitted (say, by automatic differentiation) to compute trans-
pose (adjoint) solutions. In the remainder of the paper we as-
sume transpose solves are not available (even though we use
direct linear algebra for our simple model).

Finally, the gradients required by AAO are derivatives of
residuals rather than of solutions and are presumed to be
easily obtainable.

3.6. Compurational Work Required by the AAO, MDF, and
IDF Approaches

One of the considerations in choosing a formulation for a
particular MDO application is the amount of computational
work required. However, because the types of work performed
by the AAQ, MDF, and IDF approaches are different and could
be performed in different ways (say by direct or iterative linear
algebra), it is difficult to make comparative work estimates. In
the following material we make some qualitative observations
about computational work.

Obviously, in MDF or IDF the total work will be the work per
evaluation of the objective function, constraints, and associated
gradients times the number of such evaluations required to
obtain convergence, plus the work done in the optimization.

We can assume in both cases that the optimization work will
be negligible. In IDF, each function evaluation requires the
same amount of work from each of acrodynamics and structures
that would be required in single discipline optimization, except
that there are more optimization variables so more gradients
are required. These extra gradients are gradients of the interdis-
ciplinary constraints C,; and C,;,, and the extra optimization
variables are the interdisciplinary spline ceefficients u,; and
1. The gradient computation expense grows linearly with
the number of such interdisciplinary variables. In the MDF
approach, we additionally have to solve the MDA problem at
each iteration. The work to solve the MDA problem depends
on the method employed, three of which were mentioned pre-
viously in Section 2.2. In general, we may expect the MDA
solution to be several times as expensive as the sum of a single
aerodynamics and a single structures solution. Additionally,
while there are fewer gradients required, the gradient computa-
tions are more complex, due to the off-diagonal terms in (12).

For AAQ, it is even more difficult to discuss computational
work. In some sense, in AAO all of the work is “‘optimization
work.”” Because the optimization problem will be extremely
large, and generally sparse, new algorithms and software to
solve the problems using iterative linear algebra will probably
be developed in a case-specific manner.

4. COMPUTATIONAL RESULTS

4.1. Discrete Analysis Problem

In this section we present computational results for the dis-
crete analysis problem described in Section 2.2. Such a multidis-
ciplinary analysis is only required for the MDF optimization
approach.

We took M = 40 and N = 25 for the number of interior
grid points on the flow and structures grids, respectively. As
in [6] we chose the boundary conditions on V to be v(0) =
1.299, v (1) = 0.506 which causes the flow problem to contain
a shock. The stiffness s was chosen to be a constant sufficiently
small (0.2} so that the duct wall was quite flexible. The interdis-
ciplinary mappings used a least squares spline approximation
to obtain splines describing the pressure P from the flow prob-
lem and the displacement D from the structures problem. The
knots were uniformly distributed in 0 = £ =< 1. Constraints
were applied to assure that the splines exactly matched the
boundary values on P and D. Piecewise cubic splines with
mz = 3 free (non-boundary) spline coefficients were used for
D (which is very smooth) and piecewise linear splines with
nz = 5 free spline coefficients were used for P (which contains
a discontinuity—the shock). Experimentation showed that the
MDA solutions are quite insensitive to the number of spline
coefficients used. This is because the displacement D is so
smooth that it is easy to approximate, and the pressure P, while
rough, affects the solution of the beam equation as though it
had been integrated several times. This can be seen by taking
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FIG. 6. Solution of discrete analysis problem with no flexibility (4%, V*")
and with flexibility (A'?, V1#).

s = const in (2), and integrating four times, The values of the
remaining constants were H = 1.167 and ¥ = 0.167.
Computational results are shown in Fig. 6 for the case of no
flexibility (A", V' and with Aexibility (4®, V'*), As shown,
as the wall flexes inward the shock shifts quite a bit to the right
(downstream). Essentially the same solution is obtained no
matter which of the three MDA solution methods is used. The
convergence history is displayed in Fig. 7 for the flexibility
cases. In both Newton methods, a crude damping strategy that
limited the Newton correction at any iteration to a maximuerm
of 1.0 was exercised on a few of the early iterations. As seen
in the figure, quadratic convergence was observed at the end
of the Newton iterations. The fixed point iteration convergence,
although linear, was remarkably rapid. Information on computa-
tional work is displayed in Table I. The fixed point and Newton-
grid results are essenttally independent of M, N, and the number
of interdisciplinary spline coefficients. Of course, the Newton-
spline results depend strongly on the number of spline coeffi-
cients due to the computation of (10). The entry 47 = 32 +
5 # 3 indicates, for example, that 32 linear solves of size M

were needed to solve the aerodynamics analysis problem five
times (to compute Cy} and 15 additional solves were required
to compute the three columns of the Jacobian block
iy /Iy, five times.

4.2. Discrete Design Problem

Here we present results for the discrete design problem de-
scribed in Section 2.4 obtained by employing the MDF, IDF,
and AAQ formulation approaches,

In all cases, the optimization code was NPSOL (even though
this would only be a good choice for MDF, and possibly IDF,
applied to larger problems, since NPSOL does not exploit spar-
sity). The goal velocity V was the solution for the linear duct
{with no flexibility) V"' in Fig. 6. The design variables were
coefficients of a cubic spline describing changes to the linear
duct A™, Since the duct wall will flex in, we expect the design

-for A to bow out (increasing area) to compensate, so that the

flexed duct wall A + D becomes linear and the goal velocity
is exactly achieved (objective function zero). The remaining
discretization parameters were as described for multidiscipli-
nary analysis above.

Before making performance comparisons, we give some re-
sults obtained with the *‘standard’’ MDF approach. We used
the damped Newton-grid method described above to solve the
MDA problem and warm-started the Newton iterations with the
solution from the previous analysis. Occasionally, this caused
Newton’s method to fail, in which case we restarted from the
default initial guess, which is a linear profile for V and D = 0.
The gradients of the cbjective function were obtained by the
implicit gradient method (11), (12), The NPSOL optimality
and feasibility tolerances were set to 1.e-3. In all cases, NPSOL
reported that optimal sclutions were found.

Figure 8 displays the results obtained with n, = 2 design
variables. The correct solution, a linear duct for A + D, is
net exactly achieved. NPSOL converged to a final objective
function value of 1.2 e-4 in three major iterations and six
function evaluations. Figure 9 shows the results obtained with
np = 5 design variables. The resulting duct shape is much closer
to linear. In this case, NPSOL converged to a final objective
function value of 9.7 e-6 in 13 major iterations and 16 func-
tion values.

We now present some comparisons of methods. As noted in
Section 3.4, it is difficult to directly compare the amounts of
computational work required by the three approaches. However,
by making some judicious choices, we can come close to
“‘apples-to-apples’” comparisons. In the remaining results we
employ five design variables.

Our first comparison involves MDF versus AAO. In this
MDF method we solve the multidisciplinary analysis problem
with the Newton-grid MDA method. Thus the dominating unit
of work is solving linear systems (7) of approximate size M + N.
Some of these solutions are required to compute implicit gradi-
ents of the objective function as described above and thus
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FIG. 7. Convergence history for the discrete multidisciplinary analysis problem.

involve the same coefficient matrix with different right-hand
sides. Obviously, if direct linear algebra is used, the work for
an additional right-hand side is much lower than for a whole
new factorization. However, in larger problems only iterative
linear algebra is likely to be employed. Thus we do not report
on the savings possible, due to direct solutions with multiple
RHSs. In AAO, the optimizer NPSOL has to solve linear sys-
terns whose size equals the size of the active set, which is again
approximately M + N. Thus we can compare this version of

TABLE I

Computational Work for the Discrete Multidisciplinary
Analysis Problem

Linear system Linear system Linear system

MDA, solution solutions of solutions of solutions of

method size M size N size M + N [terations
Fixed point 53 12 — 12
Newton-grid — — 1t il
Newten-spline 47 =32+5#%3 30=5+5%5 — 5

MDF with AAQO by counting the number of such linear solves.
The results are presented in Table II. The entry for MDF linear
system solutions indicates that 75 of the solutions were due to
computing 15 objective function gradients for the five design
variables. Note that this could have been accomplished with
15 transpose solves.

As expected, AAQ is more efficient than MDF by virtue of
postponing feasibility. A similar conclusion was reached in [6]
for single discipline optimization. Additionally, experiments
showed that for AAQ the number of optimization iterations
and linear system solutions does not grow with the number of
design variables.

Qur second comparison involves MDF versus IDF. In this
MDF method we solved the multidisciplinary analysis problem
with the Newton-spline MDA method. There is a subtlety in-
volved in this MDF-IDF comparison. In solving the MDA
problem (for MDF) with the Newton-spline method, we need
to solve the linear system (10) which only involves single
discipline sensitivities like (14). However, in general the gradi-
ent of the MDF objective function, given by (11), requires
solutions with the coefficient matrix in (12), the off-diagonal
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FIG. 8. Solution of discrete design problem using two design variables.

terms of which might not be available in a Newton-spline
solution process. To make for a cleaner comparison here, we
avoid this issue by simply ignoring the work required to com-
pute the objective function and its gradients. We focus instead
on the comparison of the work required in MDF (Newton-
spline) to compute the Newton iteration Jacobian (10} versus
the work in IDF to compute the constraint Jacobian (13). We
further simplify the comparison by counting only the number
of Jacobian evaluations, ignoring the different numbers of col-
umns in (10) and (13). Very roughly speaking, this isolates
the effects of postponing feasibility in IDF versus maintaining

TABLE II
Comparison of MDF vs AAQ
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FI1G. 9. Solution of discrete design problem using five design variables.

feasibility at each iteration in MDF, from all of the other com-
plexities in making the comparison. The results are displayed
in Table IT. Once again, there is an advantage to postponing
feasibility,

It must be noted that each of the Jacobian calculations re-
ported in Table 1] requires a significant amount of computation,
as detailed in Section 3.5,

5. CONCLUSIONS

We applied the multidisciplinary feasible (MDF), individual
discipline feasible (IDF), and all-at-once {(AAQO) approaches

TABLE III
Comparison of MDF vs IDF

Linear system solutions Optimization Number of Qptimization
Formulation approach of size M + N iterations Formulation approach Jacobians calculated iterations
MDF 176 =101 + 155 13 MDF (Newton-spline) . 33 10
AAQ 26 26 IDF 14 14
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for multidisciplinary design optimization to a simple model for
duct flow. This model problem exhibits some of the properties
of static aeroelasticity but is radically simpler than realistic
MDQO problems. For this model, the IDF and AAO formulations
reduce computational work by about a factor of 2-5 by
postponing feasibility of the analysis problem until optimality
is achieved. However, that advantage occurs in keeping all
other things {roughly) equal, which would probably not be the
case in real MDO applications. Additionally, a price is paid in
that useful results may not be available in IDF and AAOQ if the
optimization iteration is stopped short of optimality.

Even in the context of this simple model, it is hard to make
compatisons between the different formulation approaches be-
cause different types of work are required in each. In realistic
MDO problems, custom-tailored numerical algorithms will un-
doubtedly be used to minimize computational expense as much
as possible. That will make comparisons even more difficult.
However, we expect that many of the key problem features
investigated here will influence the choice of a formulation
approach in more difficult problems. Among these features are
the difficulty and cost of calculating gradients, the *‘band-
width™” of coupling between disciplines, and the degree to
which it is desirable to maintain independence of the disciplines
and their software.

In the near term, we expect most MDO problems to be solved
by assembling existing software components. Computational
cost will be controlled by keeping problem sizes small to moder-
ate. Thus we expect that formulation approaches like MDF or
IDF will predominate. Eventually, more analysis disciplines
will be employed (including those describing manufacturing
processes) and more design variables will be used. We expect
the enormous computational expense of such large-scale MDO
problems to-drive researchers toward more tightly integrated
coupling of the analysis disciplines and the optimization as
exemplified by the AAQ approach.
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